Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(13): e2107743, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35122475

RESUMO

In response to the call for safer energy storage systems, rechargeable aqueous manganese-based zinc-ion (Zn-ion) batteries using mild electrolyte have attracted extensive attention. However, the charge-storage mechanism and structure change of manganese-based cathode remain controversial topics. Herein, a systematic study to understand the electrochemical behavior and charge storage mechanism based on a 3 × 3 tunnel-structured Mgx MnO2 as well as the correspondence between different tunnel structures and reaction mechanisms are reported. The energy storage mechanism of the different tunnel structure is surface faradaic dissolution/deposition coupled with an intercalation mechanism of cations in aqueous electrolyte, which is confirmed by in situ X-ray diffraction, in situ Raman and ex situ extended X-ray absorption fine structure. The deposition process at the cathode is partially reversible due to the accumulation of a birnessite layer on the surface. Compared to smaller tunnels, the 3 × 3 tunnel structure is more conducive to deposit new active materials from the electrolyte. Therefore, pristine Mgx MnO2 nanowires with large tunnels display an excellent cycling performance. This work sheds light on the relationship between the tunnel structure and Mn2+ deposition and provides a promising cathode material design for aqueous Zn-ion batteries.

2.
Phys Chem Chem Phys ; 23(14): 8784-8791, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876037

RESUMO

Compared to the Haber-Bosch process, the electrochemical nitrogen reduction reaction (NRR) can convert N2 into NH3 under ambient conditions, and thus has attracted considerable attention in recent years. However, it remains a challenge to fabricate NRR catalysts with high faradaic efficiency and yield rate. In this work, by systematic first-principles calculations, we investigate the structure, stability and catalytic performance of single metal atoms anchored on porous monolayer C9N4 (M@C9N4) for the electrochemical NRR. A total of 25 transition metals (Sc-Zn, Zr-Mo, Ru-Ag, Hf-Au) were explored, and we screened out four promising systems, i.e., Nb, Ta, Re and W@C9N4, which not only exhibit high catalytic activity with low limiting potentials of -0.3, -0.42, -0.49 and -0.25 V, respectively, but also have superior selectivity that suppresses the competitive hydrogen evolution reaction. The physical origin lies in the coupling between the d orbitals of the transition metals and the 2π* orbital of N2, which activates the N2 molecule and facilitates the reduction process. Our proposed systems are kinetically and thermodynamically stable, which may shed light on future design and fabrication of high-efficiency single atom catalysts for various technologically important chemical reactions.

3.
J Phys Chem Lett ; 12(10): 2682-2690, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33689347

RESUMO

Two-dimensional (2D) ReSe2 has attracted considerable interest due to its unique anisotropic mechanical, optical, and exitonic characteristics. Recent transient absorption experiments demonstrated a prolonged lifetime of photoexcited charge carriers by stacking ReSe2 with MoS2, but the underlying mechanism remains elusive. Here, by combining time-domain density functional theory with nonadiabatic molecular dynamics, we investigate the electronic properties and charge carrier dynamics of 2D ReSe2/MoS2 van der Waals (vdW) heterostructure. ReSe2/MoS2 has a type II band alignment that exhibits spatially distinguished conduction and valence band edges, and a built-in electric field is formed due to interface charge transfer. Remarkably, in spite of the decreased band gap and increased decoherence time, we demonstrate that the photocarrier lifetime of ReSe2/MoS2 is ∼5 times longer than that of ReSe2, which originates from the greatly reduced nonadiabatic coupling that suppresses electron-hole recombination, perfectly explaining the experimental results. These findings not only provide physical insights into experiments but also shed light on future design and fabrication of functional optoelectronic devices based on 2D vdW heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...